592 research outputs found

    Multilevel analysis of facial expressions of emotion and script: Self-report (arousal and valence) and psychophysiological correlates

    Get PDF
    Background: The paper explored emotion comprehension in children with regard to facial expression of emotion. The effect of valence and arousal evaluation, of context and of psychophysiological measures was monitored. Indeed subjective evaluation of valence (positive vs. negative) and arousal (high vs. low), and contextual (facial expression vs. facial expression and script) variables were supposed to modulate the psychophysiological responses. Methods: Self-report measures (in terms of correct recognition, arousal and valence attribution) and psychophysiological correlates (facial electromyography, EMG, skin conductance response, SCR, and heart rate, HR) were observed when children (N = 26; mean age = 8.75 y; range 6-11 y) looked at six facial expressions of emotions (happiness, anger, fear, sadness, surprise, and disgust) and six emotional scripts (contextualized facial expressions). The competencies about the recognition, the evaluation on valence and arousal was tested in concomitance with psychophysiological variations. Specifically, we tested for the congruence of these multiple measures. Results: Log-linear analysis and repeated measure ANOVAs showed different representations across the subjects, as a function of emotion. Specifically, children' recognition and attribution were well developed for some emotions (such as anger, fear, surprise and happiness), whereas some other emotions (mainly disgust and sadness) were less clearly represented. SCR, HR and EMG measures were modulated by the evaluation based on valence and arousal, with increased psychophysiological values mainly in response to anger, fear and happiness. Conclusions: As shown by multiple regression analysis, a significant consonance was found between self-report measures and psychophysiological behavior, mainly for emotions rated as more arousing and negative in valence. The multilevel measures were discussed at light of dimensional attribution model

    When gratitude and cooperation between friends affect inter-brain connectivity for EEG

    Get PDF
    Background Recently several studies in the psychological and social field have investigated the social function of gift exchange as a useful way for the consolidation of interpersonal and social relationships and the implementation of prosocial behaviors. Specifically, the present research wanted to explore if gift exchange, increased emotional sharing, gratitude and interpersonal cooperation, leading to an improvement in cognitive and behavioral performance. In this regard, neural connectivity and cognitive performance of 14 pairs of friends were recorded during the development of a joint attention task that involved a gift exchange at the beginning or halfway through the task. The moment of gift exchange was randomized within the pairs: for seven couples, it happened at task beginning, for the remaining seven later. Individuals' simultaneous brain activity was recorded through the use of two electroencephalograms (EEG) systems that were used in hyperscanning. Results The results showed that after gift exchange there was an improvement in behavioral performance in terms of accuracy. For what concerns EEG, instead, an increase of delta and theta activation was observed in the dorsolateral prefrontal cortex (DLPFC) when gift exchange occurred at the beginning of the task. Furthermore, an increase in neural connectivity for delta and theta bands was observed. Conclusion The present research provides a significant contribution to the exploration of the factors contributing to the strengthening of social bonds, increasing cooperation, gratitude and prosocial behavior

    Donate or receive? Social hyperscanning application with fNIRS

    Get PDF
    Recent research in social neuroscience has shown how prosocial behavior can increase perceived self-efficacy, perception of cognitive abilitites and social interactions. The present research explored the effect of prosocial behavior, that is giving a gift during an interpersonal exchange, measuring the hyperscanning among two brains. The experiment aimed to analyze the behavioral performance and the brain-to-brain prefrontal neural activity of 16 dyads during a joint action consisting in a cooperative game, which took place in a laboratory setting controlled by an experimenter, to play before and after a gift exchange. Two different types of gift exchange were compared: experiential and material. Functional Near Infrared Spectroscopy (fNIRS) was applied to record brain activity. Inter-brain connectivity was calculated before and after the gift exchange. In behavioral data, a behavioral performance increase was observed after gift exchange, with accuracy improvement and response times decrease. Regarding intra-brain analyses, an increase in oxygenated hemoglobin was detected, especially in the dorsolateral prefrontal cortex (DLPFC) in both donor and receiver; and in the dorsal part of the premotor cortex (DPMC) in the donor. Moreover, as regards the gift type, greater activation in the DPLFC emerged in both the donor and the receiver after receiving an experiential gift. Finally, the results of the inter-brain connectivity analysis showed that after gift exchange, the donor and receiver brain activity was more synchronized in the DPMC and Frontal Eye Fields (FEF) areas. The present study provides a contribution to the identification of inter-brain functional connectivity when prosocial behaviors are played out

    A gift for gratitude and cooperative behavior. Brain and cognitive effects

    Get PDF
    Recently, different psychological studies have been interested in identifying the factors that regulate the development and maintenance of long-lasting interpersonal and social relationships. Specifically, the present research explored the link between gift exchange, gratitude and cognitive effects. The behavioral performance and neural activity of 32 participants were recorded during a cooperative game to be played before and after gift exchange. Specifically, participants had to perform the task coupled with a dear friend. Half of the couples were asked to exchange a gift before the task performance; the other half was asked to exchange a gift halfway through the task performance. For hemodynamic brain responses, functional near-infrared spectroscopy was used. Results showed that an increase in cognitive performance occurred after the exchange of gifts, with improved accuracy and lower response times in task performance. Regarding hemodynamic responses, an increase in oxygenated hemoglobin was detected, especially in the dorsolateral prefrontal cortex following the gift exchange. Furthermore, it was observed that gift exchange before the beginning of the task increased the performance level. The present study provides a significant contribution to the identification of those factors that enable the increased cognitive performance based on cooperative relationships

    Gene discovery for improvement of kernel quality-related traits in maize

    Get PDF
    Developing maize plants with improved kernel quality traits involves the ability to use existing genetic variation and to identify and manipulate commercially important genes. This will open avenues for designing novel variation in grain composition and will provide the basis for the development of the next generation of specialty maize. This paper provides an overview of current knowledge on the identification and exploitation of genes affecting the composition, development, and structure of the maize kernel with particular emphasis on pathways relevant to endosperm growth and development, differentiation of starch-filled cells, and biosynthesis of starches, storage proteins, lipids, and carotenoids. The potential that the new technologies of cell and molecular biology will provide for the creation of new variation in the future are also indicated and discussed

    Exploring the Connected Brain by fNIRS: Human-to-Human Interactions Engineering

    Get PDF
    Functional Near Infrared Spectroscopy (fNIRS) is a relatively new neuroimaging technique adequate and useful for exploring neural activity in social contexts involving human interactions. Compared to functional Magnetic Resonance Imaging (fMRI), fNIRS is easy-to-use safe, noninvasive, silent, relatively low cost and portable, and applicable to subjects of all ages, thus resulting in a good option for ecological studies involving humans in their real-life context. Moreover, by using hyperscanning technique, fNIRS allows recording the hemodynamic cerebral activity of two interacting subjects in an ecological context or during a shared performance. Thus, moving from a simple analysis about each subject\u2019s neural response during joint actions towards more complex computations makes possible to investigate brain synchrony, that is the if and how one\u2019s brain activity is related to that of another interacting partner simultaneously recorded. Here, we discuss how connectivity analyses, with respect to both time and frequency domain procedures, permitted to deepen some aspects of inter-brain synchrony in relation to emotional closeness, and to highlight how concurrent, cooperative actions can lead to interpersonal synchrony and bond construction

    Cooperative leadership in hyperscanning. Brain and body synchrony during manager-employee interactions

    Get PDF
    Recent advances in neurosciences permitted to extend the knowledge about brain functioning to the organizational field with a specific interest to leadership, with the extent to explore more proficient ways of managing. In the present research, through a hyperscanning paradigm, EEG and autonomic synchrony was explored during performance reviews to investigate if different leadership styles (partecipative vs. authoritative), could be associated with different dyadic engagement. Analysis involved coherence computation assessing the strenght of inter-brain and body synchrony, which revealed the presence of a higher emotional synchronization for both neural and bodily reactions mainly for partecipative style

    Neurofeedback Intervention for Emotional Behavior Regulation in Schizophrenia: New Experimental Evidences from Optical Imaging

    Get PDF
    Recent neuroscience research tried to identify biological markers underlying schizophrenia\u2019s (SZ) symptoms. Results showed a functional hypofrontality in SZ patients during both cognitive and emotional tasks. Here, we submitted an experimental (E) group of patients to a neurofeedback (NF) training during emotion induction (T1) and assessed its efficacy by comparing the frontal neural activity before (T0) and after it (T2), with regard to a control (C) group. Functional near-infrared spectroscopy (fNIRS) was used during an emotional task with valence and arousal rating. Behavioral results showed that patients of both groups could identify pictures\u2019 valence, both in T0 and T2. However, a significant interaction effect revealed that negative and positive stimuli received more positive values in T2 compared to T0 only in E group, as a consequence of an alleged more functional management of negative feelings. Such results were paralleled by imaging data that showed increased O2Hb levels over frontal areas for positive and negative pictures compared to neutral ones, which were even more evident in the E group in T2. The preliminary results of the present study highlight the possible application of NF training to sustain patients\u2019 achieving more awareness and regulation during emotion processing

    Empathy in Negative and Positive Interpersonal Interactions : What is the Relationship Between Central (EEG, fNIRS) and Peripheral (Autonomic) Neurophysiological Responses?

    Get PDF
    Emotional empathy is crucial to understand how we respond to interpersonal positive or negative situations. In the present research, we aim at identifying the neural networks and the autonomic responsiveness underlying the human ability to perceive and empathize with others' emotions when positive (cooperative) or negative (uncooperative) interactions are observed. A multimethodological approach was adopted to elucidate the reciprocal interplay of autonomic (peripheral) and central (cortical) activities in empathic behavior. Electroencephalography (EEG, frequency band analysis) and hemodynamic (functional Near-Infrared Spectroscopy, fNIRS) activity were all recorded simultaneously with systemic skin conductance response (SCR) and heart rate (HR) measurements as potential biological markers of emotional empathy. Subjects were required to empathize in interpersonal interactions. As shown by fNIRS/EEG measures, negative situations elicited increased brain responses within the right prefrontal cortex (PFC), whereas positive situations elicited greater responses within the left PFC. Therefore, a relevant lateralization effect was induced by the specific valence (mainly for negative conditions) of the emotional interactions. Also, SCR was modulated by positive/negative conditions. Finally, EEG activity (mainly low-frequency theta and delta bands) intrinsically correlated with the cortical hemodynamic responsiveness, and they both predicted autonomic activity. The integrated central and autonomic measures better elucidated the significance of empathic behavior in interpersonal interactions
    • …
    corecore